martes, 14 de junio de 2011

Temas de física.

Predecibilidad
Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. Una vez sabido el significado general, conviene irlo afinando para ajustarlo a los usos que la práctica demanda. Por ello, no se trata sólo de “decir antes”, sino de “decirlo bien”, o sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el futuro con cierto éxito.

Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable que se considere representativa de una cierta situación. Por ejemplo, en cuestiones climáticas podría tratarse de temperaturas medias de la atmósfera en determinados niveles, concentraciones de gases, precipitación, etc. También se pueden hacer predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos extremos, caso por ejemplo de los huracanes y tormentas tropicales. Normalmente ambos tipos de predicción están ligados y se realizan a la vez, como lo prueban los productos que ofrecen las grandes agencias e institutos de Meteorología y Climatología.
Las estimaciones realizadas para predecir se denominan predictores. Pueden construirse de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas mediante diversas técnicas, estudiando y comparando los resultados. Es claro que para estos experimentos la tercera propiedad de la predicción no tiene demasiado interés, pues la predicción -o mejor, simulación- del pasado no incita a la prisa.
Sin embargo, en las predicciones día a día para fenómenos meteorológicos, o anualmente para situaciones climáticas, es conveniente que la predicción pueda llevarse a cabo con antelación suficiente. Por supuesto, hay predictores que se pueden formular de inmediato: por ejemplo tomemos la permanencia y el paseo aleatorio. El primero consiste en suponer que la situación actual se prolongará hasta el momento para el que se quiere predecir; el segundo supone que la predicción es una mera cuestión de suerte. Ambos son predictores válidos y utilizados con frecuencia como “enemigos a batir” por cualquier otro diseño de predicción. Pero no todos los métodos son tan rápidos, y lleva siempre cierto tiempo efectuar la predicción.




Caos


La teoría de las estructuras disipativas, conocida también como teoría del caos, tiene como principal representante al químico belga Ilya Prigogine, y plantea que el mundo no sigue estrictamente el modelo del reloj, previsible y determinado, sino que tiene aspectos caóticos. El observador no es quien crea la inestabilidad o la imprevisibilidad con su ignorancia: ellas existen de por sí, y un ejemplo típico el clima. 
Efecto mariposa y caos matemático.- Empezaremos con la parte anecdótica de la teoría del caos, el famoso "efecto mariposa" Es decir, comenzaremos a investigar el iceberg a partir de su punta visible que, como sabemos, es apenas una mínima fracción del total.
En principio, las relaciones entre causas y efectos pueden examinarse desde dos puntos de vista: cualitativo y cuantitativo. 
La teoría del caos, en la medida en que considera que existen procesos aleatorios, adopta la postura (b), pero en la medida en que dice que ciertos otros procesos no son caóticos sino ordenados, sostiene que sí, que existen vínculos causales. Los vínculos causales que más desarrollará son los circuitos de retroalimentación positiva, es decir, aquellos donde se verifica una amplificación de las desviaciones: por ejemplo, una pequeña causa inicial, mediante un proceso amplificador, podrá generar un efecto considerablemente grande. 


miércoles, 4 de mayo de 2011

Corriente eléctrica
La corriente eléctrica es un movimiento de cargas negativas a través de un conductor
Esta se origina por el movimiento o flujo electrónico a trabes de un conductor el cual se produce debido a que hay una diferencia de potencial y los electrones circulan de una terminal negativa a una positiva. La corriente eléctrica se transmite por los conductores a la velocidad de la luz: 300,000 km/s. sin embargo los electrones no se desplazan a la misma velocidad 10 cm/s.
La corriente eléctrica es una corriente de electrones que atraviesa un material.
Algunos materiales como los "conductores" tienen electrones libres que pasan con facilidad de un átomo a otro.
Estos electrones libres, si se mueven en una misma dirección conforme saltan de un átomo a átomo, se vuelven en su conjunto, una corriente eléctrica.
Para lograr que este movimiento de electrones se de en un sentido o dirección, es necesario una fuente de energía externa.
Cuando se coloca un material eléctricamente neutro entre dos cuerpos cargados con diferente potencial (tienen diferente carga), los electrones se moverán desde el cuerpo con potencial más negativo hacia el cuerpo con potencia más positivo.
Los electrones viajan del potencial negativo al potencial positivo. Sin embargo se toma por convención que el sentido de la corriente eléctrica va desde el potencial positivo al potencial negativo.
La corriente eléctrica se mide en Amperios (A) y se simboliza con la letra I.

Corriente directa o corriente continúa
La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.

Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.
Las cargas eléctricas se pueden comparar con el líquido contenido en la tubería de una instalación hidráulica. Si la función de una bomba hidráulica es poner en movimiento el líquido contenido en una tubería, la función de la tensión o voltaje que proporciona la fuente de fuerza electromotriz (FEM) es, precisamente, bombear o poner en movimiento las cargas contenidas en el cable conductor del circuito eléctrico. Los elementos o materiales que mejor permiten el flujo de cargas eléctricas son los metales y reciben el nombre de “conductores”.


Leyes de kirchhoff
Las leyes (o Lemas) de Kirchhoff fueron formuladas por Gustav Kirchhoff en 1845, mientras aún era estudiante. Son muy utilizadas en ingeniería eléctrica para obtener los valores de la corriente y el potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.

Un nodo es un punto donde el circuito se divide en ramas aunque puede considerarse un nodo cualquier punto al que llegue al menos un conductor y del que salga al menos otro. En cualquier nodo, la suma algebraica de las corrientes debe ser cero. Este teorema, que también se conoce como primera ley de Kirchhoff, es simplemente el enunciado del principio de conservación de la carga. (i 1 - i 2 - i 3 = 0).
Ley de Kirchhoff
La corriente que pasa por un nodo es igual a la corriente que sale del mismo. i1 + i4 = i2 + i3
Esta ley también es llamada ley de nodos o primera ley de Kirchhoff y es común que se use la sigla LCK para referirse a esta ley. La ley de corrientes de Kirchhoff nos dice que:
En cualquier nodo, la suma de la corriente que entra en ese nodo es igual a la suma de la corriente que sale. De igual forma, La suma algebraica de todas las corrientes que pasan por el nodo es igual a cero
Mallas
 
Cuando un circuito posee mas de una batería y varios resistores de carga ya no resulta tan claro como se establecen las corrientes por el mismo. En ese caso es de aplicación la segunda ley de kirchoff, que nos permite resolver el circuito con una gran claridad.
En un circuito cerrado, la suma de las tensiones de batería que se encuentran al recorrerlo siempre serán iguales a la suma de las caídas de tensión existente sobre los resistores.
En la figura siguiente  se puede observar un circuito con dos baterías que nos permitirá resolver un ejemplo de aplicación

lunes, 28 de febrero de 2011

TEMAS DE FÍSICA

Termodinámica
        la termodinámica (movimiento de calor) es la rama de la física que se encarga del estudio se la transformación del calor en trabajo mecánico y viceversa.
  • LEYES DE LA TERMODINÁMICA
Principio cero.
Este principio establece que existe una determinada propiedad, denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado. Tiene tremenda importancia experimental — pues permite construir instrumentos que midan la temperatura de un sistema — pero no resulta tan importante en el marco teórico de la termodinámica.
Este principio fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero
La ecuación general de la conservación de la energía es la siguiente:
EentraEsale = ΔEsistema
Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:
ΔU = QW
Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema
Primera ley de la termodinámica: También conocida como principio de conservación de la energía para la termodinámica — en realidad el primer principio dice más que una ley de conservación—, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824


Segunda ley de la termodinámica
Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Tercera ley de la termodinámica
La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.
Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica.

Proceso isobárico
Es  todo proceso termodinámico  que ocurre a presión constante.
Un ejemplo podría ser la ebullición del agua en un recipiente.
Proceso isotérmico
Se da cuando la temperatura se mantiene constante, es decir es igual durante todo el proceso que se realiza. En gases seria cuando cambia el volumen a causa de la presión, a mayor presión menor volumen, y a menor presión mayor volumen (Ley de Boyle).
Diatérmicos
Una pared diatérmica es aquella que permite la interacción térmica del sistema con los alrededores. Una pared adiabática no permite que exista interacción térmica del sistema con los alrededores.
 PROCESO ADIABÁTICO
 son procesos en los que no hay transferencia de calor alguna.